(a) If \(f(x) = 3x^2 - 2x - 5\), then find \(f(1)\), \(f(2)\), \(f(a)\), \(f(-a)\) and \(f(0)\).
(b) Calculate: \(\lim_{x \to 1} \frac{x}{x^2 + x - 2}\).
(a) Find the derivative of \(y = \frac{\sqrt{x}}{x^2 - x}\).
(b) Estimate the area between the parabola \(y^2 = x\) and the line \(y = -x\).
(a) Verify the Mean Value Theorem for the function \(f(x) = x^2 - x\) for \(x \in [-2, 2]\).
(b) Define initial value problem. Solve the equation \(x\dot{y} - y = 4x\), \(y(2) = 6\).
Attempt any Eight questions
[8x5=40](a) Find the local maximum and minimum values and saddle points of \(f(x, y) = x^2 + y^2 - x^2y + 2\).
(b) Where is the function \(f(x) = |x|\) differentiable? Discuss.
Verify Rolle's theorem for \(f(x) = x^2 + 4\) for \(x \in [-2, 2]\).
Find the Maclaurin series expansion of \(e^x\) at \(x = 0\).
If \(f(x) = \sqrt{2x + 1}\) and \(g(x) = \sqrt[3]{x}\), find \((fog)(x)\) and \((gof)(x)\).
Show that the function \(f(x) = 1 + x^2\) is continuous everywhere.
Evaluate: \(\int_0^2 \frac{x \, dx}{\sqrt{1 + 2x^2}}\).
Sketch the curve \(y = 2x^2 + 1\).
Find the solution of \(y'' - 6y' - 7y = 0\).
Test whether the series \(\sum_{n=1}^{\infty} \frac{n^2}{3n^2 + 4}\) diverges or converges.